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Abstract 

_______________________________________________________________________________________ 
 
In this paper, the astonishing reality of chaos is probed and examined in a variety of 
ways. The brief history of the discovery of Chaos, the unsettling realisation that despite 
the fact that chaotic phenomena have been a part of the cosmos since its very formation 
as we’ve only recently discovered them, are given in order to stimulate the critical 
thinking faculties. An attempt to define chaotic behaviour takes place, followed by 
evidence of the impact that chaos has on our lives in the form of pictures, equations and 
thoughts. Chaotic systems are examined and are being analysed; in particular Chua’s 
Circuit which has had a great impact on facilitating our studies of chaotic behaviour 
and is proven paramount to our understanding it. Chaos does indeed play an important 
role in our lives as it describes phenomena that everyone is familiar with and everyone 
encounters each day. The thesis ends with an experiment and its analysis via Auguri, a 
programme designed for chaotic analysis which possesses a strong Graphic User 
Interface element. 

 
Keywords:  Nonlinear Circuit, Chaotic Behaviour, Chaos, Chua’s Circuit, Chaotic  
     Cryptography, Synchronisation, Secure Communications.  
_______________________________________________________________________________________ 

 

Περίληψη 

_______________________________________________________________________________________ 
 
Σε αυτή την εργασία εξερευνούμε τον εκπληκτικό κόσμος του χάους. Η σύντομη 
ιστορία της ανακάλυψης του χάους, η ανησυχητική αντίληψη ότι παρόλο που τα 
χαοτικά φαινόμενα αποτελούν μέρος του σύμπαντος από την αρχή αυτού κι όμως τα 
ανακαλύψαμε τόσο πρόσφατα δίνονται σε μία προσπάθεια πρόκλησης της κριτικής 
σκέψης του ανθρώπου. Γίνεται μία προσπάθεια ορισμού του χάους, ακολουθούμενη 
από αποδείξεις για τον αντίκτυπο που έχει το χάος στη ζωή μας σε μορφή 
φωτογραφιών, εξισώσεων και σκέψεων. Εξετάζονται και αναλύονται χαοτικά 
συστήματα· συγκεκριμένα το κύκλωμα Chua το οποίο μας βοήθησε πολύ στις μελέτες 
χαοτικών συμπεριφορών και αποδείχθηκε κυρίαρχος παράγοντας της κατανόησης 
αυτών. Το χάος πράγματι έχει σημαντικό ρόλο στη ζωή μας καθώς περιγράφει 
φαινόμενα που ο καθένας παρατηρεί καθημερινά. Η πτυχιακή τελειώνει με ένα πείραμα 
και την ανάλυσή του μέσω ενός προγράμματος ηλεκτρονικού υπολογιστή. 

 
Keywords:  Μη-γραμμικό κύκλωμα, Χαοτική συμπεριφορά, Χάος, Κύκλωμα Chua, 
     Χαοτική Κρυπτογράφηση, Ασφαλείς Τηλεπικοινωνίες. 
_______________________________________________________________________________________ 
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1. Introduction 

The nonlinear and chaotic worlds are mesmerising when one illustrates them by means 

of graphs and plots or when one ponders and contemplates their actual meaning and 

application to the real world, to our surroundings. The undeniable beauty of the Lorenz 

Attractor is a fine example, and with just a hint of imagination one can see the wings 

of a butterfly unravel from this chaotic attractor. Far from just of artistic value, chaos 

theory is thought to hold the key to solving a plethora of problems, from economic 

depressions, stock market crashes to security in communication to weather forecasting. 

For a long time we’ve failed as a species to identify chaos in nature and everyday life. 

However, chaos is indeed surrounding us. The trajectory of a fly’s movement is a 

chaotic phenomenon, as is the weather and the stock market. The illusive thing that 

leads to an inexplicable behaviour of the physical world seems to have great minds 

under its spell; from the time of the great physicist Sir Isaac Newton and Pierre-Simon 

Laplace to the era of Albert Einstein and Neil’s Bohr, a mental hunt to identify it has 

been taking place. Truth is, much of everyday life is described wholly or partly by 

chaos, and yet it wasn’t until 1905 that H. Poincare, the mathematician, discovered the 

breathtaking field of Chaos that came to challenge the Newtonian Mechanics and 

broaden our minds by equipping us with new and profound ways to view the world, to 

think outside the box and to tackle ever more efficiently our problems. 

Chaos theory, in mathematics, describes the behaviour of certain dynamical systems. A 

dynamic system is one whose state changes with time; a chaotic one is described by a 

high sensitivity to initial conditions, such that a negligible variation (by normal 

standards) in them can lead to a completely different outcome. 

Once every few decades an invention changes the landscape of some aspects of our life. 

Industrial revolutions improved our everyday lives, whilst medical revolutions 

expanded our lifespans. The 20th century’s most vital discoveries are believed to be the 

Chaos, Quantum and Relativity theories and yet not much interest was attributed to 

Chaos theory until Lorentz realised that earth’s very weather behaves as a chaotic 

system. The reason for that might be traced back to the fact that the human brain has 

the tendency to linearise the information it acquires. 
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2. Chaos 

 

2.1. Defining Chaos 
One can easily define in an unambiguous way what is not chaos, however, chaos itself 

does not seem to fall in the same category. So far there is no explicit definition of chaos, 

of what it entails or of its properties. In spite of this fact, scientists have indeed formed 

a theory of chaos, therefore we shall state that a formal definition of chaos can be 

thought as being correct if, and only if, it does classify essentially all mathematically 

well understood chaotic behaviour. 

Chaos is a state of non-normality and disorder that is observed in many a dynamic 

system. Noise cannot be the cause of chaotic behaviour, because unlike chaos, noise 

trajectories span along the whole of phase space. Any system that behaves chaotically 

raises Attractors like the Lorenz Attractor [Fig. 0.], trajectories that twirl inside the 

phase space filling a certain part of it in a somewhat structural manner. 

 

 
Fig. 0. Lorenz’s Attractor. 
 

Attractors that have a fractal structure like [Fig. 1.] are called Strange Attractors, and 

whilst many of them are chaotic, non-chaotic strange attractors also exist, with the most 
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common ones being the Double-scroll attractor, Hénon attractor, Rössler attractor, 

Tamari attractor, and of course the Lorenz attractor. 

 

 
Fig. 1. Visualisation of a 3D Strange Attractor. 
 

A great number of Degrees of Freedom cannot be the cause of chaos either. Chaos 

manifests as a sensitivity to initial conditions and it is an endogenous property of a non-

linear system. 

 

2.2. Theory of Chaos 
Finding the Phase Space dimension provides us with the number of a system’s degrees 

of freedom. Trajectories that do not intersect on the phase space mean there is an 

Embedding Dimension “m”. The Correlation integrals ( 𝐶𝐶(𝜀𝜀) ) measure, for each phase 

dimension m, the possibility that two points on the attractor be found with a distance 

less than an arbitrary distance “r”. 

 

𝐶𝐶(𝜀𝜀) = lim
𝑁𝑁→∞

� 1
𝑁𝑁2
∑ 𝛩𝛩(𝜀𝜀 − ‖𝑥⃗𝑥(𝑖𝑖) − 𝑥⃗𝑥(𝑗𝑗)‖)𝑁𝑁
𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

� , 𝑥⃗𝑥(𝑖𝑖) ∈ ℝ𝑚𝑚     (1) 

 

The information loss rate is called Kolmogorov Entropy K. In a periodic signal there is 

no signal loss, ergo, k = 0. A random signal has an absolute entropy: K→∞, i.e. noise 



[Eastern Macedonia and Thrace Institute of Technology,                                               
Dept. of Electrical Engineering - Thesis] October 18, 2014 

 

Name: Ioannis Mamalikidis, ID: 4627, Undergraduate Thesis. 8 
 

The Lyapunov Exponent λ is a measure of Chaos intensity which calculates the 

divergence of two neighbouring trajectories that begin under slightly different initial 

conditions. Non positive λ coefficient indicates that the system is not sensitive to initial 

conditions; that is tantamount to declaring a system non-chaotic. 

Let 𝑋̇𝑋 be a vector such as Euro’s exchange rate. 𝑋̇𝑋 is a time dependent variable, hence, 

a time vector. 

 

𝑋̇𝑋 = 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑁𝑁          (2) 

 

where N is the time vector’s length (i.e. the number of elements on 𝑋̇𝑋). The impact other 

variables have on the system is hidden within the measured variable and according to 

Floris Takens’ “Takens Theorem” it is possible to form virtual variables using the 

measured one, equivalent to the original variable, only with a slight time shift τ of its 

elements. The measured value is one of the system’s Degrees of Freedom. In an m-

dimensional space, points that correspond to the values of 

 

𝑌𝑌𝚤̇𝚤= �𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖−𝜏𝜏,𝑋𝑋𝑖𝑖−(𝑚𝑚−1)𝜏𝜏�, 𝑖𝑖 = 1 …𝑁𝑁        (3) 

 

can be created so that if for example m = 3 then 𝑌𝑌𝚤̇𝚤’s coordinates are in a three-

dimensional space 

 
𝑚𝑚 = 1 𝑋𝑋𝑖𝑖
𝑚𝑚 = 2 𝑋𝑋𝑖𝑖−𝜏𝜏
𝑚𝑚 = 3 𝑋𝑋𝑖𝑖−2𝜏𝜏

� 𝑌𝑌𝚤̇𝚤= (𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖−𝜏𝜏,𝑋𝑋𝑖𝑖−2𝜏𝜏)        (4) 

 

For i = 10, τ = 4 𝑌𝑌10̇ = (𝑋𝑋10,𝑋𝑋6,𝑋𝑋2). 

To figure out the optimum τ, the Average Mutual Information is invoked and 𝐼𝐼 = 𝐼𝐼(𝜏𝜏). 

If a first local minimum occurs in I (mutual information) then that is the optimum τ 

value. To proceed to the embedding dimension one needs first invoke the correlation 
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dimension, which is somewhat like the fractal dimension, and draw its plot. “m” will 

then be [v]+1, i.e. there are [v]+1 degrees of freedom on the system. 

 

2.3. Dynamic Systems 
Dynamic Systems are those systems whose evolution from some initial condition is 

described by a group of equations. A system of n different equations describes 

mathematically a variety of dynamic systems. 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥, 𝑡𝑡, 𝑐𝑐)           (5) 

 

where x is a vector of n real time functions and is described as follows: 

 

𝑥𝑥(𝑡𝑡) ≡ {𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)}        (6) 

 

or by the symbol 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 where 𝑅𝑅𝑛𝑛 is the phase space. The constant 𝑐𝑐 is an exogenous 

variable whilst 𝑐𝑐𝑖𝑖 are the system’s control parameters. The system state on a given time 

on phase space is determined by a point. Said point is moving with time, creating a 

trajectory in the phase space according to 𝑭𝑭: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 vector field of (Eq. 5). Each 

point in the phase space corresponds to one trajectory, which is traced back to its 

deterministic nature of the system’s description. By extension, if the status of the system 

is known for one time period, it is possible to infer the past and the future by solving 

the integral of (Eq. 5). 

 

2.4. Non-Chaotic Attractors 
A Nonchaotic attractor is an attractor that is converging to a limit but as its Lyapunov 

exponent is non-positive, it is non-chaotic. On such an attractor, its trajectory on the 

phase space describes the evolution of the dynamic system. A fixed point that attracts 

the trajectories is, by definition, called an attractor and is or is not chaotic depending 

on its attributes. Two trajectories on nonchaotic attractors that are near each other 

remain as such for a long period of time for nonchaotic attractors are not sensitive to 
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initial conditions. By extension, the evolution of non-chaotic attractors is predictable 

for however long a period of time. A non-chaotic attractor can be a fixed point, a limit 

circle or a limit torus. 

A fixed point is an attractor that reaches a state of balance. In the case of a pendulum, 

for example, there is friction transforming energy into heat, the speed of the pendulum 

gradually decreases and eventually the pendulum stops on a fixed point. 

In the phase space this action is represented as shown in [Fig. 2.] in which the dots 

represent the initial conditions. 

 

 
Fig. 2. Phase space of a Pendulum as it reaches a state of balance. 
 

All the trajectories converge and eventually stop on the fixed point (0). 

An example of a limit cycle is the heartbeat whilst resting. It is a periodic orbit of an 

isolated system. If the heart is disturbed by running, the heartbeat will return to its 

original trajectory after a short period of time (when the heart gets some rest), as shown 

in [Fig. 3.]. 
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Fig. 3. Phase space of a two-dimensional system whose attractor is a limit cycle. 
 

If an irrational fraction is formed between 2 random independent linear frequencies 

from a system that has r independent linear frequencies then the non-chaotic attractor 

is a limit torus. The system’s movement is quasi-periodic and the trajectory on the phase 

space spans over the surface of a torus as shown in [Fig. 4.]. 

 

 
Fig. 4. A Torus attractor. 
 

 

3. The Impact of Chaos in everyday life 
 



[Eastern Macedonia and Thrace Institute of Technology,                                               
Dept. of Electrical Engineering - Thesis] October 18, 2014 

 

Name: Ioannis Mamalikidis, ID: 4627, Undergraduate Thesis. 12 
 

3.1. The Chaos inside us since the moment we’re born 
Most people might not realise it, but chaotic behaviour might be what let them be who 

they are today. For an embryo, everything starts from a single cell, which is then divided 

into two cells, and those two cells are divided into four cell and so on and so forth, all 

of which are uniform, featureless. Then the cells begin to clump together and 

differentiate into lung cells, bone cells and so on, absent of thought, absent of 

coordination. This is called morphogenesis (from the Greek words “Μορφή” and 

“Γέννηση”) meaning the birth of shape and is an example of self-organisation. A. M. 

Turing was the first to understand and explain self-organisation in his paper “The 

Chemical Basis of Morphogenesis”, and he was the first to give a mathematical 

explanation [Eq. 7], [Eq. 8] for morphogenesis. 

 
𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡

= 𝑠𝑠�16 − 𝑎𝑎𝑖𝑖,𝑗𝑗𝑏𝑏𝑖𝑖,𝑗𝑗� + 𝐷𝐷𝑎𝑎∇2𝑎𝑎        (7) 

 
𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡

= 𝑠𝑠�𝑎𝑎𝑖𝑖,𝑗𝑗𝑏𝑏𝑖𝑖,𝑗𝑗 −.𝑖𝑖,𝑗𝑗− 𝛽𝛽𝑖𝑖,𝑗𝑗� + 𝐷𝐷𝑏𝑏∇2𝑎𝑎       (8) 

 

These equations are usually used in astronomy and atomic physics to describe a living 

process and now they describe how self-organisation can occur in biological systems 

and transform featureless and smooth things into something with features; without any 

intervention, all by itself. Complexity seems to be an inherent property of the universe.  

 

3.2. Pattern Formation 
It is truly astounding that exceptionally simple equations governing extremely simple 

processes result in pattern formation as a natural consequence. In the sand, for example, 

the steady wind blowing across creates all kinds of shapes such as [Fig. 5.]. 
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Fig. 5. Pattern formation in the sand. 
 

Each grain of sand is almost identical to any other and the grains have no knowledge 

of the shapes they become part of, and yet, the grains are self-organised into ripples, 

waves and dunes. Similarly to that, the chemicals seeping across an embryo might 

indeed cause its cells to self-organise into different organs. 

In a few hours of computation, Turing got an example of dappled pattern from a type 

‘a’ morphogen system [Fig. 6.]. 

 

 
Fig. 6. Dappled pattern from a type ‘a’ morphogen system. 
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These strange blobs and patterns evolve on their own from a featureless chemical soup 

as if magic were involved. Their similarity to the markings on the skin of animals is 

remarkable. Another example of pattern formation from smooth, featureless chemicals 

is that of a variation of Belousov’s chemicals.  

Boris Pavlovich Belousov was a chemist who was investigating how our bodies extract 

energy from sugars by formulating a mixture of chemicals that mimic a part of the 

process of glucose absorption in the body. All of the chemicals were clear in colour, 

and as he poured the last one in he noticed that the chemical soup changed colour. This 

was nothing extraordinary, but the solution changed colour again, going back to clear. 

Surely two chemicals can mix and change their colour, but how can they un-mix? This 

seemed to violate the laws of physics, and weirder still, the solution changed colour 

again and again, oscillating back and forth between clear and opaque. 

If a variation of Belousov’s chemicals is left unstirred in a petri dish, instead of 

oscillating they self-organise into beautiful, breathtaking patterns and shapes out of 

nowhere [Fig. 7.]. 

 

 
Fig. 7. Self-Organisation of Belousov-Zhabotinsky chemicals. 
 



[Eastern Macedonia and Thrace Institute of Technology,                                               
Dept. of Electrical Engineering - Thesis] October 18, 2014 

 

Name: Ioannis Mamalikidis, ID: 4627, Undergraduate Thesis. 15 
 

More fascinating still, our heart’s cell-coordination as the heart beats behaves exactly 

like the way Belousov’s chemicals move as coordinated waves. Self-organisation is all 

over the natural world. From morphogenesis, to animal skin, to the way human organs 

work, to weather itself. 

 

3.3. The Butterfly Effect 
Weather is similar to Belousov’s chemicals in that they both behave in very complicated 

ways but are based on very simple mathematical rules and a part of those rules is 

feedback. As with Chua’s Circuit described later below, order and chaos emerge on 

their own from a simple system so long as there is feedback. 

Order and chaos are deeply linked; all these are chaotic phenomena, and after taking 

this into consideration we must come to the conclusion that the natural world is 

profoundly unpredictable. However, this is not necessarily negative, for what makes it 

unpredictable is what allows it to create patterns and structure. 

If we think of a camera output on a screen but the camera records that very screen which 

was used to show its output, then we get the classical example of a feedback loop in 

which a loop is created with multiple copies of what appeared on the screen. We get a 

picture, in a picture, in a picture which at first glance seems very predictable; strange 

things begin to happen as we zoom the camera, however. If, for example, we record 

ourselves with a lit match in that configuration, we then notice that what is being filmed 

bears little resemblance to what now appears on the screen, because small changes in 

the movement of the match became rapidly amplified as they looped from the camera 

to the screen and back to the camera. Even though each step of the process can be 

mathematically described, there is no way of predicting how the tiny changes in the 

flickering of the flame will end up in the image. This is precisely what we’d call “The 

butterfly effect”, a phrase that came out of Lorenz’s talk “Does the flap of a butterfly’s 

wings in Brazil set off a tornado in Texas?”. 

Yet again, the butterfly effect was all too visible on the equation [Eq. 9] 

 

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛)                   (9) 
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that Robert May was investigating in order to model how animal populations changed 

over time. It seemed that seemingly negligible changes to the rates at which the animals 

reproduced could have enormous consequences in their overall population which in 

turn could go huge or incredibly small for no obvious reason. It was at that moment that 

the Newtonian dream that a simple equation could be used to predict how a system 

would behave was shattered. 

 

3.4. The Genesis of Fractal 
Fractal designs exist everywhere in nature; they are on plant leaves, animal skin and on 

the land. The person who identified fractal designs was Benoît B. Mandelbrot, the 

mathematician. He had an uncanny ability to perceive pattern and structure, form and 

see mathematical rules where most people could only see anarchy. He was befuddled 

and failed to comprehend how mathematicians were obsessed with perfect structures 

like a sphere or a cube when the environment is full of irregular shapes such as those 

of rocks, trees and clouds for which there is no proper mathematic way of describing 

them. Mandelbrot figured out that there is a principle that governs all those shapes, and 

it is called “Self-Similarity”, meaning that there is a shape which is repeated over and 

over again like in [Fig. 8.] where a line segment is on the bottom, that then branches 

into two smaller lines above which in turn branch into four smaller lines and the process 

is repeated. 
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Fig. 8. Self-Similarity on a Tree. 
 

This exactly same principle holds true for the way our lungs are formed [Fig. 9.] and 

the way our blood vessels are distributed throughout our bodies, for the way 

broccoflower is formed [Fig. 9.] and the way lightning strikes the earth [Fig. 9.], for the 

way rivers are formed [Fig. 9.] and zebras and tigers’ skins are. Chaos and pattern, it 

seems, are woven into nature’s most fundamental rules. Examining the lungs we see a 

line that branches into two lines that in turn branch into four that in turn branch again 

and again. The same could be said about the broccoflower which is a cone made of 

smaller cones that in turn are made of even smaller cones. This is indeed a new kind of 

geometry, named “Fractal”, a term coined by Mandelbrot. 
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Fig. 9. Fractal Design examples in Nature. 
 

Mandelbrot, however, got even further than that. In addition to identifying fractal 

designs in nature, he created fractal designs of his own. Having access to the incredible 

power of IBM’s supercomputer, he was working on an astonishingly simple equation 

[Eq. 10] to create an infinitely complex and mind-bogglingly beautiful mathematical 

illustration [Fig. 10.]. 

 

𝑍𝑍 ⇌ 𝑍𝑍2 + 𝐶𝐶                    (10) 
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Fig. 10. Mathematical Illustration of Z ⇌ Z2 + C. 
 

This means that the equation feeds back on itself and every output becomes part of the 

new input as well, and it keeps happening for ever. This is why such a simple equation 

can result in infinite complexity. 

Each shape in the picture contains an infinite number of smaller shapes, all similar to 

each other so that if we zoom into an edge of a shape of this picture we get [Fig. 11.]. 

 

 
Fig. 11. Zoomed in Mathematical Illustration. 
 

and if we zoom yet again then we get [Fig. 12.] which shows how a zoomed shape has 

in it parts similar to the original shape [Fig. 10.], which if we zoom even further we’ll 

get parts similar to [Fig. 11.] again. This keeps happening ad infinitum. 
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Fig. 12. Further zoomed in Mathematical Illustration. 
 

 

4. Chua’s Circuit 

Leon O. Chua presented Chua’s circuit [Fig. 13.] for the first time in Japan, 1983. This 

circuit is basically a chaotic oscillator that is equipped with the ability to manifest 

chaotic behaviour for a specific range of its parameters. It is undoubtedly the simplest 

electronic circuit to allow us to observe chaotic behaviour, and this very fact 

differentiates it from all the other electronic circuits, rendering it extraordinarily 

beneficial to people who want to study and do research on chaotic behaviour. It could 

be argued that Chua’s Circuit, with its famous double scroll attractor, was a milestone 

for chaos research. 
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Fig. 13. Chua’s Circuit. 
 

4.1. What makes Chua’s Circuit tick 
In order for a circuit to manifest chaotic behaviour, three conditions must be met: 

 

• The circuit must be comprised of one or more nonlinear elements, 

• One or more locally active resistors, 

• And three or more energy storage elements. 

 

In all its simplicity, Chua’s Circuit does qualify as a chaotic circuit, meeting all three 

conditions. It consists of three energy storage elements which are the C1 and C2 

capacitors, the L Coil with R0 internal Coil Resistance, an active resistor R and a 

nonlinear element Nr. The Nr element behaves as a nonlinear, negative impedance 

resistor. There are two main Nr circuits thus far. The first implementation is comprised 

of four linear resistors and two diodes that give it its nonlinear behaviour whilst the 

negative impedance is achieved via an Operational Amplifier and three resistors 

creating a negative impedance converter as illustrated in [Fig. 14.]. The diodes and 

resistors R1, R2, R3, and R4 provide it with the nonlinear behaviour and the negative 

impedance converter provides the negative impedance. 
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Fig. 14. Negative Impedance Converter. 
 

The Nr circuit depicted in [Fig. 14.], however, does not have as good a characteristic 

curve as that of [Fig. 16.]. In this thesis the Nr circuit in [Fig. 16.] is used as Nr. 

 

4.2 Chua’s Circuit Equations 
The three non-linear dynamic equations that describe Chua’s Circuit behaviour are the 

following: 

 

𝐶𝐶1𝑉̇𝑉1 = 𝐺𝐺(𝑣𝑣2 − 𝑣𝑣1) − 𝑓𝑓(𝑣𝑣1)                  (11) 

𝐶𝐶2𝑉̇𝑉2 = 𝐺𝐺(𝑣𝑣1 − 𝑣𝑣2) − 𝑖𝑖𝐿𝐿                  (12) 

𝐿𝐿𝚤𝚤̇𝐿𝐿 = −𝑣𝑣2 − 𝑅𝑅0𝑖𝑖𝐿𝐿                   (13) 

 

where 

 

𝐺𝐺 = 1
𝑅𝑅
, and                    (14) 

𝑓𝑓(𝑣𝑣1) = 𝐺𝐺𝑏𝑏𝑣𝑣1 + (𝐺𝐺𝑎𝑎 − 𝐺𝐺𝑏𝑏)(�𝑣𝑣1 + 𝐵𝐵𝑝𝑝� − �𝑣𝑣1 − 𝐵𝐵𝑝𝑝�)               (15) 

 

which is the nonlinear equation that describes the nonlinear element Nr and is composed 

of three lines with 𝐺𝐺𝑎𝑎,  𝐺𝐺𝑏𝑏+, 𝐺𝐺𝑏𝑏− slopes as shown in [Fig. 15.]. 
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Fig. 15. V-I characteristic Curve. 
 

 

5. Experiment and Computation 
 

5.1. The Circuit 
The circuit that was examined is depicted on [Fig. 16.]. 

 
Fig. 16. Experiment’s Circuit. 
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The Circuit is composed of one inductor, L1 at 18mH, one capacitor, C1 at 100nF, 

seven resistors, R1 at 220Ω, R2 at 220Ω, R3 at 2.2kΩ, R4 at 22kΩ, R5 at 22kΩ, R6 at 

3.3kΩ and R7 at 1.8kΩ, two DC power sources, V1 at 8VDC and V2 at -8VDC, and 

finally an operational amplifier OP275GS. 

The L1 and C1 is the resonant circuit which helps the system to oscillate with minimal 

damping. That is, the resonant circuit tries to minimise the influence on the oscillatory 

system that has the effect of reducing its oscillations (damping). 

The R1 and R4 facilitate the positive feedback of the operational amplifier where the 

output of the op-amp is fed back to its positive input and an oscillation is then created. 

The Operational Amplifier OP275GS is the first to feature the Butler Amplifier front 

end. Bipolar and JFET transistors are combined in this new front end in order to provide 

the accuracy and low noise performance of a bipolar transistor, but keeping the speed 

and quality of a JFET one. 

 

5.2. Time Vector 
In this experiment, the Auguri programme, which is described later on, analyses a time 

vector in order to compute various coefficients and results in general so as to determine, 

amongst other things, if a system is chaotic. A time vector is a collection of observations 

over time and it is usually represented by the variable 𝑥𝑥(𝑡𝑡) where t is time. 

 

5.3. Auguri 
Auguri is a programme that provides tools for the manipulation and analysis of data 

throughout the process of predictive data mining: from data capture to multivariate 

model design, and from the specification of solutions to these models to their 

comparison and storage for later use, all under a powerful and intuitive graphical user 

interface. 

A thorough guide to the circuit’s analysis with the Auguri programme follows. 
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Fig. 17. Circuit’s Data. 
The voltage time series gathered from the circuit is opened for analysis by the Auguri programme and is displayed in the Spreadsheet within it. 
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Fig. 18. Average Mutual Information Analysis Configuration. 
Series A and B are set to the Valid Input Range’s value, and Maximum Delay is set to “100”. 
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Fig. 19. Average Mutual Information Results. 
This window containing the Average Mutual Information results is then displayed; results are: First Minimum is “9” and Absolute Minimum is “96”. 
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Fig. 20. Average Mutual Information Chart. 
This graph confirms what was previously shown as raw data. It clearly shows that “9” is the first minimum as well as “96” is the Absolute one. 
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Fig. 21. Covariance and Correlation Configuration. 
On the Covariance and Correlation, Series A and B are set to Valid Input Range’s Value, and the Maximum Lag is set to “100”. 
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Fig. 22. Covariance and Correlation Results. 
The Results of the analysis are then displayed on this window. Theiler Window’s first zero is on “82”. 
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Fig. 23. Covariance and Correlation Chart. 
As suggested by the aforementioned data, the first nullification on the graph (Theiler Window) is clearly to be found on “82”. 
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Fig. 24. False Nearest Neighbours Configuration. 
For the False Nearest Neighbours Analysis the First Minimum of AMI is used as Time Delay, and First Zero of C&C as Exclusion Window. 
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Fig. 25. False Nearest Neighbours Results. 
After the Analysis is complete the results appear on this Window. Although there is no nullification, the value seems to be “4”. 
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Fig. 26. False Nearest Neighbours Chart. 
The False Nearest Neighbour’s Graph corroborates with our previous findings of the value “4”, therefore the system’s dimension is four. 
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Fig. 27. Generalised Dimensions Configuration Tab 1. 
Here, the Input Range is set to Valid Input Range’s Value, the Dimension Steps to the Max Chaotic Value “10” and Time Delay to First Minimum. 
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Fig. 28. Generalised Dimensions Configuration Tab 2. 
On Distance and Metric, the Minimum Epsilon is set to 0.01 and the Maximum Epsilon to 0.9. 
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Fig. 29. Generalised Dimensions Configuration Tab 3. 
On Reference Points, the Exclusion Window is set to the Theiler Window’s Value and on Dimension Estimation and Smoothing no change takes place. 



[Eastern Macedonia and Thrace Institute of Technology,                                               
Dept. of Electrical Engineering - Thesis] October 18, 2014 

 

Name: Ioannis Mamalikidis, ID: 4627, Undergraduate Thesis. 38 
 

Fig. 30. Generalised Dimensions Results 
The results from Generalised Dimensions appear on this Window. Generalised Dimensions are followed by three Graphs. 
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Fig. 31. Generalised Dimensions - Series 1, Order 2: Cq vs. Epsilon Chart. 
The Least Square Method is used on the slopes of these lines to produce the Series 1, Order 2: Dq vs. Embedding Dimension diagram [Fig. 33.]. 
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Fig. 32. Generalised Dimensions - Series 1, Order 2: Dq vs. Epsilon Chart. 
This chart depicts the derivatives (slopes) of [Fig. 31.]. 
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Fig. 33. Generalised Dimensions - Series 1, Order 2: Dq vs. Embedding Dimension Chart. 
This chart shows that the Fractal Dimension of the system is FD ≈ 1.8, which is indicative of chaos. 
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Fig. 34. Maximum Lyapunov Exponent Configuration Tab 1. 
On the Maximum Lyapunov Exponent the “Min Dimensions” is set to “3”, the “Max Dimensions” is set to “6”, the Time Delay to the First minimum, Minimum 
Neighbours to 10 and the Exclusion Window to the Theiler Window’s Value. 
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Fig. 35. Maximum Lyapunov Exponent Configuration Tab 2. 
On the Rosenstein Tab the “Min Dimensions” is set to “3”, “Max Dimensions” is set to “6”, Time Delay to “9”, and the Exclusion Window to “82”. 
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Fig. 36. Maximum Lyapunov Exponent Results. 
The results of the Lyapunov Exponent are depicted on this window. The Estimated Lyapunov is “0.032414512233909”. 
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Fig. 37. Maximum Lyapunov Exponent Chart. 
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5.4. Analysis 
 

5.4.1. Average Mutual Information Analysis 
The analysis began with the Average Mutual Information Analysis configured as shown 

below: 

• Series A: Valid Input Range [A1:A15041]. 

• Series B: Valid Input Range [A1:A15041]. 

• Max Delay: 100 

The acquired results are the following: 

• First Minimum: 9 

• Absolute Minimum: 96 

 

The system’s Time Delay is 9. 

The Average Mutual Information is used to determine the system’s delay. This method 

was proposed as a method for finding the system’s delay by Andrew M. Fraser and 

Harry L Swinney in the article "Independent coordinates for strange attractors from 

mutual information," Phys. Rev. A 33 (1986) 1134-1140). The idea of delay coordinates 

is that if you can observe a variable from a system X(t) and you want to reconstruct a 

higher dimensional attractor, you can consider X(t),X(t+T),…X(T+nT) to produce a 

(n+1)-dimensional coordinate which can be plotted. It is imperative that an appropriate 

value for T be chosen for too short a delay will consequently make X(t) very similar to 

X(t+T), ergo, all of the data will be near the line X(t)=X(t+T) when plotted. Too long 

a day will virtually render the effort fruitless as no useful information can be 

extrapolated from the plot. An appropriate choice for T is one that given a measurement 

of X(t), on average, many bits can be predicted about X(t+T). 

 

5.4.2. Covariance and Correlation 
The analysis continued with the Covariance and Correlation configured as shown 

below: 

• Series A: Valid Input Range [A1:A15041]. 
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• Series B: Valid Input Range [A1:A15041]. 

• Max Lag: 100 

The acquired results are the following: 

• Theiler Window: 82 

 

The first nullification of the autocorrelation function, known Theiler Window, is the 

time that the Neighbours are spatially divergent. 

If there is no nullification of the autocorrelation function then the absolute minimum of 

the Average Mutual Information is to be used as Theiler’s Window. 

It is essential that we have no false neighbours. If we imagine an ellipse and two anti-

diametric points are selected to be projected to a line then they will be side by side, 

which is indeed false. If I look at the ellipse or circle from 1 dimension then I’ll see the 

points as being neighbours, however, if I look at the points from a 2 or higher 

dimensional space then it becomes clear that they are not. 

 

5.4.3. False Nearest Neighbours 
I, then, proceeded to examine the False Nearest Neighbours Statistics configured as 

shown below: 

• Input Range: Valid Input Range [A1:A15041]. 

• Time Delay: First Minimum [9] 

• Exclusion Window: Theiler Window [82] 

The acquired results are the following: 

• Variables: 4 

• The system’s dimension is four. 

 

This system is described by 4 variables/equations because in the False Nearest 

Neighbours graph it becomes apparent that, although there is no nullification, the line 

starts to become horizontal on the value 4. 

The embedding dimension is the phase-space’s number of dimensions m that are 

required for the proper embedding of the attractor, provided that an attractor exists. The 
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attractor’s dimension must always be smaller than or equal to the embedding 

dimension. 

 

5.4.4. Generalised Dimensions 

The Generalised Dimensions analysis of Auguri is configured as shown below: 

i. Input 

• Input Range: Valid Input Range [A1:A15041]. 

ii. Order and Embedding 

• Min. Dimensions: 1 

• Dimension Steps: 10 (anything greater than 10 is considered complex, 

therefore 10 is the maximum chaotic value) 

• Time Delay: First Minimum [9] 

iii. Distance and Metrics 

• Minimum Epsilon: 0.01 

• Maximum Epsilon: 0.9 

iv. Reference Points: 

• Exclusion Window: Theiler Window [82] 

v. Plot: X axis:  

• Left Minimum: 0 

• Left Maximum: 10 

The acquired results are the following: 

• Fractal Dimension: 1.8254612489908 

 

The dimension steps value is 10 because anything above 10 is not considered chaos. 

On [Fig. 33.] Generalised Dimensions - Series 1, Order 2: Dq vs. Embedding 

Dimension Chart it is revealed that Fractal Dimension FD = 1.8254612489908, which 

is not an integer and that is indicative of chaotic behaviour. Normal geometric figures 

have integer geometric dimensions. A line is a one-dimensional figure, a circle is a two-

dimensional figure and a ball is a three-dimensional figure. Chaos takes place on non-
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integer dimensions, hence, fractal dimension; just like the one revealed by the 

Generalised Dimensions Analysis of Auguri. 

 

5.4.5. Lyapunov Exponent 
The Lyapunov Exponent, named after Aleksandr Lyapunov, is an indicator of the rate 

of separation of infinitesimally close trajectories.  

The Lyapunov Exponent analysis of Auguri is configured as shown below: 

i. Input 

• Input Range: Valid Input Range [A1:A15041]. 

ii. Kantz 

• Min. Dimensions: 3 

• Max. Dimensions: 6 

• Time Delay: First Minimum [9] 

• Min. Neighbourhood: 10 

• Exclusion Window: Theiler Windows [82] 

iii. Rosenstein 

• Min. Dimensions: 3 

• Max. Dimensions: 6 

• Time Delay: First Minimum [9] 

• Exclusion Window: Theiler Windows [82] 

The acquired results are the following: 

• Estimated Lyapunov Exponent: 0.032414512233909 

The formula for figuring out the forecasting period is: 

 
1
𝐿𝐿
                      (16) 

 

where 𝐿𝐿 is the estimated Lyapunov. 

The predictability of the system is: 
1
𝐿𝐿

= 1
0.032414512233909

≅ 31 steps 
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Ergo, the predictability of the system is 31 steps. 

The Maximum Lyapunov Exponent calculated by Auguri provides useful insight as a 

means of a notion of predictability for the Circuit whose dynamic behaviour is being 

analysed. 

A positive L indicates chaotic behaviour whilst a non-positive value indicates absence 

of chaos. 

All the information points to Chua’s circuit being a chaotic system. As a chaotic system, 

Chua’s Circuit seems to be a valid candidate for communications encryption using 

chaos. 
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